Strong coupling between plasmons and excitons in nanocavities can result in the formation of hybrid plexcitonic states. Understanding the dispersion relation of plexcitons is important both for fundamental quantum science and for applications including optoelectronics and nonlinear optics devices. The conventional approach, based on statistics over different nanocavities suffers from large inhomogeneities from the samples, owing to theRead More…
Artificial neural networks are computational network models inspired by signal processing in the brain. These models have dramatically improved performance for many machine-learning tasks, including speech and image recognition. However, today’s computing hardware is inefficient at implementing neural networks, in large part because much of it was designed for von Neumann computing schemes. Significant effortRead More…
A novel magnetized plasma modulator for THz range is proposed. The structure is based on 2-D photoniccrystal (PC) constructed by triangular lattice of Si rods in air with line defects and an InSb rod as apoint defect. Based on the magneto-optic effect, the resonant frequency can be tuned by the externalmagnetic field and the radiusRead More…
This work reports the plasmonically enhanced refractive index sensor consisting of silicon nanowire array (Si-NWA) coated by a conformal gold (Au) nanoshell. Compared to the pure Si or Au NWA system, the Si-Au core-shell setup leads to substantially enhanced optical in-coupling to excite strong surface plasmon resonance (SPR) for highly sensitive sensors. Results indicate thatRead More…
They propose a cavity-enhanced resonator based on graphene surface plasmonics for infrared sensing. In such a resonator, a continuous and non-patterned monolayer graphene serves as the sensing medium by exciting surface plasmons on its surface, which can preserve the excellent electronic property of graphene and avoid the interaction between biomolecules and dielectric substrate. To improve itsRead More…