image_pdfimage_print

Sustainable Energy from Bacteria

Adopting solar power can be tricky, and expensive, especially in regions where cloudy skies are the norm, such as parts of Canada and Northern Europe. Now, researchers at the University of British Columbia (UBC), Canada, have devised a cheap, sustainable solar cell that relies on bacteria to convert light to energy, even in an overcast environment .

Going biogenic

The UBC team took a more affordable and greener route that bypassed the extraction process altogether. First, the team genetically engineered E. coli cells to synthesize lycopene, a photosensitive pigment that absorbs light in the 380-to-520-nm range. Then, the researchers coated the bacteria with a layer of TiO2 nanoparticles, which acts as a semiconductor. Finally, the group applied the mixture to a conductive glass surface to act as the anode (along with an I/I3electrolyte and a graphite cathode) in a dye-sensitized solar cell.

Measuring up

The researchers recorded an open-circuit potential of 0.289 V, a short-circuit current of 0.19 mA and a corresponding short-circuit density of 0.686 mA cm−2 (an improvement on the 0.362 mA cm−2 achieved by others in the field). The UBC team suggests that this method for fast and efficient synthesis of a new class of bio-hybrid photovoltaic materials directly addresses the need for reducing the manufacturing cost of biogenic solar cells. However, the team notes that there is room for improvement. Efficiency could increase through ordered deposition of the biogenic material, use of platinum as the counter electrode, minimizing dark currents, using MOF complexes as photoactivators, better matching of electrolytes and use of more light-sensitive dyes.

For more information: doi: 10.1002/smll.201800729

A Step Toward Practical Plasmonic Chips?

Optoelectronics researchers in Russia have proposed a new design for a fast plasmonic chip, with the potential to dramatically cut the large energy losses that have typically blocked practical use of such devices.

Plasmonic components on integrated circuits—in which energy from light is concentrated into surface plasmon polaritons (SPPs), sub-wavelength electromagnetic oscillations that can propagate along a metal-dielectric interface—have significant promise for enabling large-scale integration in nanoscale optoelectronic chips and devices. That’s because SPPs offer the potential for breaking the diffraction limit imposed by the micrometer-scale wavelength of light in conventional waveguides, and allowing for the nanometer-scale integration common in electronic chips.

But there’s a catch: SPP propagation requires a metal interface, and that means that the electric field attenuates quickly through absorption in the metal—dropping off, according to Fedyanin, a billion times at distances of around a millimeter. And, while it’s possible to compensate for these losses by pumping additional energy into the system, the optical pumping schemes demonstrated thus far to do so have required a large, impractical energy input.

The added insulating layer helps to suppress leakage current and ohmic losses in the metal layer. And, when a forward bias voltage is applied, it allows a sufficient concentration of electrons near the semiconductor-insulator-metal interface to create a population inversion in the semiconductor and provide optical gain for the plasmonic mode propagating in the waveguide—amplification that compensates for SPP propagation losses.

In numerical models of the geometry, using a hypothetical system with gold as the metal layer, hafnium dioxide as the insulator, and the p-type semiconductor indium arsenic, the team calculated that the system could fully compensate for SPP propagation losses “at a current density of only 2.6 kA/cm2.” Replacing gold with copper, which significantly increases the minority-carrier injection efficiency, dropped the required current density to 0.8 kA/cm2. “Such an exceptionally low value,” the study concludes, “demonstrates the potential of electrically pumped active plasmonic waveguides and plasmonic nanolasers for future high-density photonic integrated circuits.”

For more information: doi: 10.1364/OE.23.019358

Enhancing Surface Sensing Sensitivity of Metallic Nanostructures using Blue-Shifted Surface Plasmon Mode and Fano Resonance

Improving surface sensitivities of nanostructure-based plasmonic sensors is an important issue to be addressed. Among the SPR measurements, the wavelength interrogation is commonly utilized. We proposed using blue-shifted surface plasmon mode and Fano resonance, caused by the coupling of a cavity mode (angle-independent) and the surface plasmon mode (angle-dependent) in a long-periodicity silver nanoslit array, to increase surface (wavelength) sensitivities of metallic nanostructures. It results in an improvement by at least a factor of 4 in the spectral shift as compared to sensors operated under normal incidence. The improved surface sensitivity was attributed to a high refractive index sensitivity and the decrease of plasmonic evanescent field caused by two effects, the Fano coupling and the blue-shifted resonance. These concepts can enhance the sensing capability and be applicable to various metallic nanostructures with periodicities.

Optical setup and optical properties of 900-nm-period Ti/Ag capped nanoslits with normal and oblique-angle incidence. (a) Optical setup for measuring angular transmission spectra. (b) Schematic configuration depicts the geometrical parameters of capped nanoslits with a 10-nm-thick titanium and 60-nm-thick silver film and the direction of the TM-polarized incident light. (c) Measured angular transmission diagram in air for 900-nm-period capped nanoslit arrays with a Ti/Ag film. The color dashed lines show the theoretical resonance wavelengths for the SPR mode. (d) Measured transmission spectra in air at 0° and 35° for 900-nm-period capped nanoslit arrays with a Ti/Ag film.

For more information: https://www.nature.com/articles/s41598-018-28122-5

Researchers simulate simple logic for nanofluidic computing

Invigorating the idea of computers based on fluids instead of silicon, researchers at the National Institute of Standards and Technology (NIST) have shown how computational logic operations could be performed in a liquid medium by simulating the trapping of ions (charged atoms) in graphene (a sheet of carbon atoms) floating in saline solution. The scheme might also be used in applications such as water filtration, energy storage or sensor technology.

Invigorating the idea of computers based on fluids instead of silicon, researchers at the National Institute of Standards and Technology (NIST) have shown how computational logic operations could be performed in a liquid medium by simulating the trapping of ions (charged atoms) in graphene (a sheet of carbon atoms) floating in saline solution. The scheme might also be used in applications such as water filtration, energy storage or sensor technology.

NIST’s ion-based transistor and logic operations are simpler in concept than earlier proposals. The new simulations show that a special film immersed in liquid can act like a solid silicon-based semiconductor.

The NIST molecular dynamics simulations focused on a graphene sheet 5.5 by 6.4 nanometers (nm) in size and with one or more small holes lined with oxygen atoms. These pores resemble crown others electrically neutral circular molecules known to trap metal ions.

In the NIST simulations, the graphene was suspended in water containing potassium chloride, a salt that splits into potassium and sodium ions. The crown ether pores were designed to trap potassium ion, which have a positive charge.

Applying voltages of less than 150 mV across the membrane turns “off” any penetration. Essentially, at low voltages, the membrane is blocked by the trapped ions, while the process of loose ions knocking out the trapped ions is likely suppressed by the electrical barrier. Membrane penetration is switched on at voltages of 300 mV or more. As the voltage increases, the probability of losing trapped ions grows and knockout events become more common, encouraged by the weakening electrical barrier. In this way, the membrane acts like a semiconductor in transporting potassium ions.

More information: Alex Smolyanitsky et al. Aqueous Ion Trapping and Transport in Graphene-Embedded 18-Crown-6 Ether Pores, ACS Nano (2018). DOI: 10.1021/acsnano.8b01692