Fano resonance with high local field enhancement under azimuthally polarized excitation

image_pdfimage_print

41598_2017_785_Fig1_HTML

Being an enabling technology for applications such as ultrasensitive biosensing and surface enhanced spectroscopy, enormous research interests have been focused on further boosting the local field enhancement at Fano resonance. Here, they demonstrate a plasmonic Fano resonance resulting from the interference between a narrow magnetic dipole mode and a broad electric dipole mode in a split-ring resonator (SRR) coupled to a nanoarc structure. Strikingly, when subjected to an azimuthally polarized beam (APB) excitation, the intensity enhancement becomes more than 60 times larger than that for a linearly polarized beam (LPB). We attribute this intensity enhancement to the improved conversion efficiency between the excitation and magnetic dipole mode along with improved near-field coupling. The APB excited Fano structure is further used as a nanoruler and beam misalignment sensor, due to the high sensitivity of intensity enhancement and scattering spectra to structure irregularities and excitation beam misalignment. Interestingly, they find that, regardless of the presence of structural translations, the proposed structure still maintains over 60 times better intensity enhancement under APB excitation compared to LPB excitation. Moreover, even if the APB excitation is somewhat misaligned, their Fano structure still manages to give a larger intensity enhancement than its counterpart excited by LPB.

Source: https://www.nature.com/articles/s41598-017-00785-6

Related paper:  Wuyun Shang et al.,Fano resonance with high local field enhancement under azimuthally polarized excitation, Scientific Reports 7, Article number: 1049 (2017).

 

Leave a Reply

Calendar

September 2017
S M T W T F S
« Aug    
 12
3456789
10111213141516
17181920212223
24252627282930

Best Sites