
Nanosphere  lithography  for
device fabrication
Nanosphere  lithography  (NSL),  originally  termed  ‘  natural

lithography’  by  its  inventors,1  is  becoming  a  widespread
bottom-up technique to pattern solid surfaces at the sub-

micrometer  and  nanoscales.  Groups  such  as  Van  Duyne’s2  at

Northwestern University and others3 undertook pioneering work
on NSL in the 1990s and early this decade, and a growing
number of research laboratories around the globe now use the
technique in many scientific disciplines. The approach has
applications  in  various  materials  systems,  is  fast  and
scalable to large surface areas, and is inexpensive in terms
of equipment and operation. Some variants of the technique
have reached a high level of maturity and control. Therefore,
it is likely that it will soon be used in device fabrication.

NSL exploits the self-organization of particles at the double-
or  triple-phase  boundary  of  a  colloidal  suspension,  which
consists of a liquid phase (typically water or water-alcohol
solutions)  and  spherical  solid  particles  (polystyrene,
polymethyl  methacrylate,  or  silicon  dioxide,  for  example).
Suitable suspensions are fabricated by chemical precipitation
processes and are commercially available. Particle diameters
range  from  some  10nm  to  a  few  micrometers,  with  size
variations of a few percent. The size distribution—among other
factors—is of crucial importance for the quality of nanomasks,
which determine the lithographic pattern. In the bulk of the
liquid  the  colloidal  particles  are  randomly  dispersed  and
exhibit Brownian motion. However, at the surface, or at the
thin menisci of the suspension (as exist at the periphery of a
droplet, for example), capillary forces act on the spheres. On
flat or slightly curved interfaces this leads to the self-
arrangement of spheres in a hexagonally close-packed 2D mono
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(or double) layer. When this is placed on a solid substrate
and dried, the space between each triplet of spheres can be
regarded  as  a  mask  opening,  where  the  substrate  can  be
modified by adding or removing material using conventional

thin-film  deposition, 1 – 5  sputter  erosion,  or  ion

implantation6–8(see  Figure  1).

Fig.1. (a) Plane-view transmission electron microscopy bright-field image of an

array of thermally evaporated nanocrystalline nickel (Ni) dots (dark) on silicon

after removing the nanosphere lithography (NSL) mask. The size of the Ni dots is

determined both by the size of the spheres and the clogging effects of the mask

openings.5(b) Scanning electron microscopy (SEM) image of zinc oxide nanoparticles

and nanowires arranged in an array on a silicon substrate by sputter deposition

through a mask of 600nm-diameter polystyrene spheres. The NSL mask is removed in the

front, but partially still visible in the background. (c) A regular network of

silver-coated organic nanowires created by plasma modification of an NSL double-

layer mask of polystyrene beads.12

Usually, the shape of nanoparticles formed by combining NSL
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and physical vapor deposition techniques is expected to be the
shadow projection of the mask opening. However, there are
several other influencing factors, such as the angular and
energy distribution of the arriving atoms, the materials used
(for  deposition,  substrate,  and  mask),  the  substrate
temperature (influencing nucleation and crystal growth as well
as the dewetting behavior of the deposited material), and the
clogging behavior of the mask openings. Therefore, we study
the  morphology,  chemical  composition,  and  crystalline
structure  of  arrays  of  nano-objects  using  transmission
electron  microscopy,  and  correlate  this  information  to
macroscopic properties. The shape of mask openings can be

modified  using  thermal, 9 , 1 0  plasma, 1 1 ,  1 2  and  ion  beam

processes.13,14 Combining this approach with hard mask deposition
through NSL masks, subsequent reactive ion etching, and also
the combination with angular resolved deposition techniques,
we can create numerous complex 2D and 3D motifs arranged in

close-packed hexagonal arrays.9, 12,15

NSL-created metallic nanostructures have been applied to study

the  plasmonic  behavior  of  nanoparticle  arrays,2  to  create

optical metamaterials,9 and to act as hard masks to pattern

substrates for improved semiconductor epitaxy.15 NSL structures
also  act  as  catalysts  for  the  growth  of  semiconductor

nanowires,4 and can initiate pillar formation in glancing angle

deposition of films, among other examples.16,17
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Fig.2. (a) Schematic presentation of NSL with spheres selectively assembled in a

trench. The inset is an SEM image.18 The spheres at the front have been removed after

depositing a metal film. Two spheres at the back are left uncoated. (b) A side view,

where objects of interest (red) are seen trapped by electric fields between the

tips. (Graphics courtesy of Robert Lindner.)

Recently,  we  achieved  the  selective  self-organization  of
spheres within a trench formed by optical lithography on a
silicon  wafer,  using  a  doctor-blade-based  NSL

technique.18,19 Sphere deposition can be largely suppressed by a
self-assembled layer of octadecyltrichlorosilane molecules on
the  substrate  top  surface:  see  Figure  2(a).  Using  this
arrangement, we can create pairs of opposing metallic tips
with nanometric tip radii within the trench. Exploiting the
strong  field  enhancement  between  the  tips,  it  should  be
possible to localize, manipulate, and address small objects
within the trench: see Figure 2(b). Future work will deal with
exploiting such linearly arranged field concentrators, with
further improvements of large-area 2D NSL masks, and with the
in-depth characterization of selected plasmonic and catalytic
nanoparticle systems.
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