+98-22431773 m_hamidi@sbu.ac.ir



  • 2015 MRS Fall Meeting & Exhibit

  • November 29-December 4, 2015
  • Boston, Massachusetts
  • Meeting Chairs: T. John Balk, Ram Devanathan, George G. Malliaras, Larry A. Nagahara, Luisa Torsi

2015 MRS Fall Meeting Symposia

Note: The MRS/E—MRS Bilateral Energy Conference will be comprised of the energy-related symposia at the 2015 MRS Fall Meeting*.

Symposium A—Engaged Learning of Materials Science and Engineering in the 21st Century

Biomaterials and Soft Materials

Symposium B—Stretchable and Active Polymers and Composites for Energy and Medicine
Symposium C—Tough, Smart and Printable Hydrogel Materials
Symposium D—Biological and Bioinspired Materials in Photonics and Electronics—Biology, Chemistry and Physics
Symposium E—Engineering and Application of Bioinspired Materials
Symposium F—Biomaterials for Regenerative Engineering
Symposium G—Plasma Processing and Diagnostics for Life Sciences
Symposium H—Multifunctionality in Polymer—Based Materials, Gel and Interfaces
Symposium I—Nanocellulose Materials and Beyond—Nanoscience, Structures, Nanomanufacturing and Devices
Symposium J—Wetting and Soft Electrokinetics
Symposium K—Materials Science, Technology and Devices for Cancer Modeling, Diagnosis and Treatment
Symposium L—Nanofunctional Materials, Nanostructures and Nanodevices for Biomedical Applications

Nanomaterials and Synthesis

Symposium M—Micro- and Nanoscale Processing of Materials for Biomedical Devices
Symposium N—Magnetic Nanomaterials for Biomedical and Energy Applications
Symposium O—Plasmonic Nanomaterials for Energy Conversion
Symposium P—Synthesis and Applications of Nanowires and Hybrid 1D-0D/2D/3D Semiconductor Nanostructures
Symposium Q—Nano Carbon Materials—1D to 3D
Symposium R—Harsh Environment Sensing—Functional Nanomaterials and Nanocomposites, Materials for Associated Packaging and Electrical Components and Sensing

Mechanical Behavior and Failure of Materials

Symposium S—Mechanical Behavior at the Nanoscale
Symposium T—Strength and Failure at the Micro- and Nanoscale—From Fundamentals to Applications
Symposium U—Microstructure Evolution and Mechanical Properties in Interface-Dominated Metallic Materials
Symposium V—Gradient and Laminate Materials
Symposium W—Materials under Extreme Environments (MuEE)
Symposium Y—Shape Programmable Materials

Electronics and Photonics

Symposium Z—Molecularly Ordered Organic and Polymer Semiconductors—Fundamentals and Devices
Symposium AA—Organic Semiconductors—Surface, Interface and Bulk Doping
Symposium BB—Innovative Fabrication and Processing Methods for Organic and Hybrid Electronics
Symposium CC—Organic Bioelectronics—From Biosensing Platforms to Implantable Nanodevices
Symposium DD—Diamond Electronics, Sensors and Biotechnology—Fundamentals to Applications
Symposium EE—Beyond Graphene—2D Materials and Their Applications
Symposium FF—Integration of Functional Oxides with Semiconductors
Symposium GG—Emerging Materials and Platforms for Optoelectronics
Symposium HH—Optical Metamaterials—From New Plasmonic Materials to Metasurface Devices
Symposium II—Phonon Transport, Interactions and Manipulations in Nanoscale Materials and Devices—Fundamentals and Applications
Symposium JJ—Multiferroics and Magnetoelectrics
Symposium KK—Materials and Technology for Non-Volatile Memories

Energy and Sustainability  (MRS/E-MRS Bilateral Energy Conference)*

Symposium LL—Materials and Architectures for Safe and Low-Cost Electrochemical Energy Storage Technologies
Symposium MM—Advances in Flexible Devices for Energy Conversion and Storage
Symposium NN—Thin-Film and Nanostructure Solar Cell Materials and Devices for Next-Generation Photovoltaics
Symposium OO—Nanomaterials-based Solar Energy Conversion
Symposium PP—Materials, Interfaces and Solid Electrolytes for High Energy Density Rechargeable Batteries
Symposium QQ—Catalytic Materials for Energy
Symposium RR—Wide-Bandgap Materials for Energy Efficiency—Power Electronics and Solid-State Lighting
Symposium SS—Progress in Thermal Energy Conversion—Thermoelectric and Thermal Energy Storage Materials and Devices

Theory, Characterization and Modeling

Symposium TT—Topology in Materials Science—Biological and Functional Nanomaterials, Metrology and Modeling
Symposium UU—Frontiers in Scanning Probe Microscopy
Symposium VV—In Situ Study of Synthesis and Transformation of Materials
Symposium WW—Modeling and Theory-Driven Design of Soft Materials
Symposium XX—Architected Materials—Synthesis, Characterization, Modeling and Optimal Design
Symposium YY—Advanced Atomistic Algorithms in Materials Science
Symposium ZZ—Material Design and Discovery via Multiscale Computational Materials Science
Symposium AAA—Big Data and Data Analytics for Materials Characterization
Symposium BBB—Liquids and Glassy Soft Matter—Theoretical Studies and Neutron Scattering
Symposium CCC—Integrating Experiments, Simulations and Machine Learning to Accelerate Materials Innovation
Symposium DDD—Lighting the Path towards Non-Equilibrium Structure-Property Relationships in Complex Materials

Symposium X—Frontiers of Materials Research

Source: http://www.mrs.org/fall2015/


November 2, 2015 to November 4, 2015

Location : CECAM-HQ-EPFL, Lausanne, Switzerland


The goal of the present workshop is to bring together the different communities working in computational plasmonics, to address open questions such as:

• How to identify a plasmon excitation in electronic structure method results? How do excitations transform from molecular-like to plasmon-like with increasing size?
• What are the bottlenecks to be overcome to get a first principle description of plasmonics? Are plasmonic systems posing conceptual or technical issues different from large molecules, or is it just a matter of size?
• Are the present multiscale approaches to molecular plasmonics complete? If not, what is missing? How can the chemical interaction be included in this framework?
• What are the computational predictions accessible to experimental verifications? What are the burning questions by experiments to theory in this field?
• Are non conventional plasmonics materials such as graphene or metal oxides posing new or different challenges with respect to metal nanostructures? Is the classical Elettrodynamics treatment as good for these materials as for metals, or an atomistic modeling is mandatory? How does nanostructuring modify the plasmonic properties of non conventional plasmonic materials?



  • Stefano Corni (CNR-NANO, Institute of nanoscience, Modena, Italy)
  • Arrigo Calzolari (CNR-NANO, Institute of nanoscience, Modena, Italy)

Source: http://www.cecam.org/workshop-0-1114.html


The 9th International Congress on Advanced Electromagnetic Materials in Microwaves and Optics

The Ninth International Congress on Advanced Electromagnetic Materials in Microwaves and Optics – Metamaterials 2015, will comprise a 4-day Conference (7–10 September), and a 2-day Doctoral School(11–12 September). Co-organized by the Metamorphose Virtual Institute and the University of Oxford and hosted by the University of Oxford, this Congress follows the success of Metamaterials 2007-2014 and continues the traditions of the highly successful series of International Conferences on Complex Media and Metamaterials (Bianisotropics) and Rome International Workshops on Metamaterials and Special Materials for Electromagnetic Applications and TLC. The Congress will provide a unique topical forum to share the latest results of the metamaterials research in Europe and worldwide and bring together the engineering, physics, and material science communities working on artificial materials and their applications from microwaves to optical frequencies, as well as in acoustics, mechanics, and thermodynamics.


The Doctoral School collocated with the Conference will represent an excellent opportunity for students and young researchers to get exposure to the latest advancements in the field of metamaterials and to meet the leading experts in this rapidly developing field. For more information, visit the website of the European Doctoral Programs on Metamaterials – EUPROMETA.






27 MAY 2015

Associate Professor Andrew Truscott (L) with PhD student Roman Khakimov.

The bizarre nature of reality as laid out by quantum theory has survived another test, with scientists performing a famous experiment and proving that reality does not exist until it is measured.

Physicists at The Australian National University (ANU) have conducted John Wheeler’s delayed-choice thought experiment, which involves a moving object that is given the choice to act like a particle or a wave. Wheeler’s experiment then asks – at which point does the object decide?

Common sense says the object is either wave-like or particle-like, independent of how we measure it. But quantum physics predicts that whether you observe wave like behavior (interference) or particle behavior (no interference) depends only on how it is actually measured at the end of its journey. This is exactly what the ANU team found.

“It proves that measurement is everything. At the quantum level, reality does not exist if you are not looking at it,” said Associate Professor Andrew Truscott from the ANU Research School of Physics and Engineering.

Despite the apparent weirdness, the results confirm the validity of quantum theory, which governs the world of the very small, and has enabled the development of many technologies such as LEDs, lasers and computer chips.

The ANU team not only succeeded in building the experiment, which seemed nearly impossible when it was proposed in 1978, but reversed Wheeler’s original concept of light beams being bounced by mirrors, and instead used atoms scattered by laser light.

“Quantum physics’ predictions about interference seem odd enough when applied to light, which seems more like a wave, but to have done the experiment with atoms, which are complicated things that have mass and interact with electric fields and so on, adds to the weirdness,” said Roman Khakimov, PhD student at the Research School of Physics and Engineering.

Professor Truscott’s team first trapped a collection of helium atoms in a suspended state known as a Bose-Einstein condensate, and then ejected them until there was only a single atom left.

The single atom was then dropped through a pair of counter-propagating laser beams, which formed a grating pattern that acted as crossroads in the same way a solid grating would scatter light.

A second light grating to recombine the paths was randomly added, which led to constructive or destructive interference as if the atom had travelled both paths. When the second light grating was not added, no interference was observed as if the atom chose only one path.

However, the random number determining whether the grating was added was only generated after the atom had passed through the crossroads.

If one chooses to believe that the atom really did take a particular path or paths then one has to accept that a future measurement is affecting the atom’s past, said Truscott.

“The atoms did not travel from A to B. It was only when they were measured at the end of the journey that their wave-like or particle-like behavior was brought into existence,” he said.

The research is published in Nature Physics.


Source: http://www.anu.edu.au/news/all-news/experiment-confirms-quantum-theory-weirdness


Valerie C. Coffey

The tunable white laser created at ASU comprises a novel nanosheet that lases in three elementary colors. The device is tunable to any visible color as well as white. [Image: ASU/Nat. Nanotech.]
A white-light laser has the potential to replace white LEDs in lighting, displays, sensing and telecom, with higher energy conversion efficiencies and higher output powers. But multicolor lasing from a small, monolithic semiconductor-based laser has remained elusive due to fundamental challenges in materials and structures.

Researchers at the Arizona State University (ASU; Tempe, Arizona, USA) have reportedly overcome these challenges for the first time, to create a multi-segment monolithic white laser that emits at one or all of the visible colors of the spectrum at once (Nat. Nanotech., doi:10.1038/nnano.2015.149). ASU professor Zheng Ning and colleagues worked with various nanomaterials in multiple configurations for more than ten years before successfully finding the solution. Lasing in green and red from a monolithic semiconductor sheet came first; but growing blue-emitting materials on the same sheet took two years to perfect.

The winning technique involved dynamically manipulating a ZnCdSSe alloy nanosheet along an axial temperature gradient during chemical vapor deposition growth. The team achieved the desired segmented nanosheet morphology separately from the desired material composition, a novel approach requiring multiple steps and simultaneous cation-anion exchange in a careful sequence. The resulting structures measure 60 by 45 µm and range in thickness from 60 to 350 nm.

The multi-segment monolithic nanosheets lase at red, green and blue wavelengths, and every color in between, when excited by a 355-nm pulsed laser at room temperature. The emission reaches across 190 nm of the visible wavelength range, the largest ever reported for such a structure.

The team’s experimental proof of concept will require further efforts to operate via battery instead of optical pumping. Still, the researchers believe that demonstration of the required growth process marks a significant step toward the goal of electrically operated white lasers.

[Correction, 2015/08/07: We have changed the title of this story; the previous title incorrectly suggested that this development represented the first white laser rather than the first monolithic white laser.]


Source: http://www.osa-opn.org/home/newsroom/2015/august/world_s_first_white_lasers/#.VdrWI_mqqkp


The Announcement of Master’s Thesis Defense (Mr. Ramezani)

Please click on the image to see it with higher quality


Defa Agaye Ramezan


27/08/2015 28/08/2015

The ICTP – Eurasian Centre for Advanced Research (ICTP-ECAR) is organizing “Workshop on Photonics : Fundamentals & Applications”, to be held at the ICTP-ECAR in Izmir, from 27 to 28 August 2015.

Celebrating the International Year of Light and as an inauguration of the Department of Photonics at Izmir Institute of Technology, the workshop aims to bring together theorists and experimentalists working across a wide range of topics, including light-matter interactions, photonic materials, lasers, plasmonics, metamaterials and quantum optics. During this workshop, there will be plenary and invited talks given by leading experts in their fields as well as contributing talks given by young researchers. Poster session provides a good opportunity for the young researchers and graduate students for presenting their results and discussing them with the experts. The workshop will also aim to create synergy between the participants from different backgrounds and to promote the future collaborations.





  • Light-matter interactions
  • Quantum Optics
  • Photonic Materials and Devices
  • Plasmonics
  • Lasers
  • Photonic crystals
  • Related topics

Invited speakers

  • A. İmamoğlu  (ETH Zurich, Switzerland)
  • M.A. Michel-Beyerle (Nanyang Technological U., Singapore)
  • A. Asgari (RIAPA, Iran)
  • F. Ay (Anadolu U., Turkey)
  • A. Bek (METU, Turkey)
  • V. Benda (TU Prague, Czech Republic)
  • I. Carusotto (U. of Trento, Italy)
  • Ü. Demirbaş (Int. Antalya U., Turkey)
  • H. Hoppe (TU Ilmenau, Germany)
  • A. Kiraz (Koç U., Turkey)
  • E. Lidorikis (U. of Ioannina, Greece)
  • B. Ortaç (Bilkent U., Turkey)
  • J. Zaumseil (U. of Heidelberg, Germany)


Organizing committee

  • Sevilay Sevinçli (IZTECH)
  • Özgür Çakir (IZTECH)
  • Serdar Özçelik (IZTECH)
  • Canan Varlıklı (Ege U.)
  • Selçuk Aktürk (İstanbul Technical U.)


Scientific Committee

  • Ceyhun Bulutay (Bilkent U.)
  • Aykutlu Dana (Bilkent U.)
  • Hilmi Volkan Demir (Bilkent U.)
  • Salih Dinleyici (IZTECH)
  • Sıddık İçli (Ege U.)
  • Naci İnci (Boğaziçi U.)
  • Ali Serpengüzel (Koç U.)
  • Raşit Turan (METU)
  • Ceylan Zafer (Ege U.)


Social events:

27 August 2015 : Conference Dinner*

29 August 2015 : Ephesus Excursion*



Source: http://ictp-ecar.org/events/workshop-on-photonics-fundamentals-applications/


City College of New York, New York City, NY, USA

August 4, 2015 – August 7, 2015

The International Conference on Metamaterials, Photonic Crystals and Plasmonics (META) features every year the latest developments in the area of Nanophotonic, Metamaterials and related topics.

META 2015

The conference program consists of plenary lectures, keynote talks, special sessions of invited talks, general sessions and high-profile poster sessions that typically cover a broad range of exciting physics, such as metamaterials and negative index materials, metatronics and graphene metamaterials, plasmonics and nanophotonics, plasmon-enhanced photovoltaics, photonic and plasmonic crystals and cavities, materials for photonics (Graphene, MoS2, WS2, etc), quantum photonics, nanobiophotonics, structured light, near-field optics and nano-optics, transformational electromagnetics and cloaking, acoustic metamaterials, optomechanics, nanofabrication technologies, etc.

The conference program typically features an excursion program and a banquet.


Previous META conferences:




2015 Vinod Menon, Said Zouhdi New York, USA
2014 Nikolay Zheludev, Jing Hua Teng, Said Zouhdi Singapore
2013 Hamid M. K. Al-Naimiy, Said Zouhdi Sharjah-Dubai, United Arab Emirates
2012 Xavier Begaud, Said Zouhdi Paris, France
2010 Hadia Elhennawy, Said Zouhdi Cairo, Egypt
2008 Alexey Vinogradov, Said Zouhdi Marrakesh, Morocco
2002 Said Zouhdi Marrakesh, Morocco


META15 Plenary Speakers

META’15 general chair :         Said Zouhdi   –  Paris-Sud University, France


META’15 general co-chair :    Vinod M. Menon  –  City College of New York, USA


META15 Plenary Speakers :    Sir Michael Berry, Federico Capasso, Nader Engheta, Claire Gmachl, Atac Imamoglu, Mikhail Lukin, Vlasimir Shalaev, Nikolay Zheludev


Source: http://metaconferences.org/ocs/index.php/META15/META15


Tomography is an imaging technique that allows the reconstruction of a three-dimensional object from a collection of two-dimensional projection images. Images of almost any type can be used as long as the relationship between the two-dimensional projections and the object properties are known and satisfy the projection theorem: the image contrast should vary linearly with the property of interest of the sample. Because of its generality, tomography, envisioned by Johan Radon in 1917, has been widely used, from probing the internal structure of the Earth to imaging the internal organs of living organisms. Now, writing in Nature Nanotechnology Ashwin Atre and co-workers from Stanford University and the FOM Institute AMOLF in the Netherlands show that tomography can be utilized to image plasmons in nanoscale objects using two-dimensional cathodoluminescence projections.

Imaging plasmon modes at the nanoscale is extremely challenging because the physical dimensions of the objects are much smaller than the wavelength of the light coupling to them. Researchers, therefore, have tried to use shorter-wavelength radiation, such as electron beams as used in cathodoluminescence (CL) and electron energy-loss spectroscopy (EELS). In CL imaging, a small electron beam probe is placed at a known location within the object; the electron beam excites the sample and the light emanating from the object is then detected in the far field, as shown in Fig. EELS, on the other hand, analyses the energy of the electrons that pass through the sample offering good spectral and spatial resolution, as well as good collection efficiency. Detecting the emitted light by CL has the advantage that the spectral resolution usually exceeds that achievable by analysing transmitted electrons. The fact that EELS, unlike CL, probes all excitations means that radiative (light-emitting) and non-radiative modes cannot be discriminated. Comparing CL and EELS spectra offers this possibility. Alternatively, resolutions better than the wavelength of light can be achieved by collecting the emitted light in the near field, but this requires a complicated apparatus and may not be suitable for tomographic imaging.


Fig :   Cathodoluminescence signal collection in a scanning electron microscope. A focused electron beam (red) is stepped over a nano-crescent made of a polystyrene core and gold shell. The light (gamma) generated by the incident electron beam at each position is linked to the plasmonic excitations at that location and can be collected by a spectrometer. The nano-crescents studied by Atre and colleagues are rotationally symmetric around the z axis. The symmetry reduces the requirements for the number of projections needed to reconstruct a three-dimensional representation of the plasmonic modes. For objects where the mutual orientation of the electron beam and the object has no effect, a single projection image is sufficient to generate a virtual tilt series that can be used to reconstruct the object in three dimensions. For plasmons, the mutual orientation of the beam and the excited object needs to be taken into account, in principle requiring a large set of projections. Nevertheless, Atre and colleagues achieve a good agreement between simulations and the plasmonic excitation map obtained from only seven projections.


A drawback of CL is the poor light-collection efficiency, as only a small fraction of the light generated by the electron beam reaches the detector. This fact, combined with the limited brightness of electron sources leads to data acquisition times that make collection of a standard tilt series of projection images for tomography impractical. Moreover, extensive electron-beam irradiation can damage the sample. Atre and colleagues circumvent these challenges by preparing crescents randomly oriented on a substrate and then only acquiring the projection that is at 90° with respect to the electron beam. From this single projection, the researchers generate, using a computer algorithm, a full standard tomographic tilt series by taking advantage of the symmetry of the object. The three-dimensional tomographic reconstruction is then performed using traditional filtered back-projection of this virtual tilt series.

The price to pay for this significant reduction in data collection is that not all of the plasmonic modes may be detected. For a particular mode to be excited, a favourable orientation of the nano-crescent and the electric field associated with the incident electron beam is necessary. Collecting CL images from several nano-crescents with suitable orientation reduces or eliminates the possibility of missing an image of an excitation mode. When CL spectra are collected in a scanning (transmission) electron microscope the CL signal is integrated along the entire electron-beam path within the imaged object. As a result, the CL signal can be considered to satisfy the projection theorem, although this is far from obvious. In fact, because the CL signal depends on the mutual orientation of the electric field of the incident electron beam and the excited object, a rigorous treatment would require a full vector tomography reconstruction. However, the symmetry argument invoked by the researchers allows them to reduce the vectorial reconstruction problem to a scalar one. This simplification seems to be supported by a good agreement between the experiments and simulations.

The work of Atre and colleagues has the potential to contribute to the many fields in which imaging plasmonic modes is desirable. It is worth noting, however, that in the case of imaging plasmonic modes, the highest possible spatial resolution does not depend solely on the experimental set-up (SEM plus CL). For example, plasmons exhibit non-local effects that may outweigh the probe size; in addition, the dimensions of the examined object and the spatial delocalization of the low-energy excitations should also be considered. the incident electron beam broadens as it goes through the sample, an effect that can be reduced by increasing the energy of the electron beam.

One of the most attractive features of Atre and co-workers’ achievement is the fact that the experimental set-up is rather simple, consisting of an SEM with a far-field CL attachment. This should make the method accessible to many laboratories working in nanoplasmonics. To avoid artefacts, however, the symmetry argument should still be used with caution.



Marek Malac is at the National Institute for Nanotechnology and in the Department of Physics, University of Alberta, Edmonton, Alberta T6G 2E1, Canada.

e-mail: mmalac@ualberta.ca


Published online: 6 April 2015


Jianming Wen et al., report the modeling of on-chip optical nonreciprocity with an active microcavity. On-chip nonreciprocal light transport holds a great impact on optical information processing and communications based upon integrated photonic devices. By harvesting gain-saturation nonlinearity, they recently demonstrated on-chip optical asymmetric transmission at telecommunication bands with superior nonreciprocal performances using only one active whispering-gallery-mode microtoroid resonator, beyond the commonly adopted magneto-optical (Faraday) effect. Here, detailed theoretical analysis is presented with respect to the reported scheme. Despite the fact that their model is simply the standard coupled-mode theory, it agrees well with the experiment and describes the essential one-way light transport in this nonreciprocal device. Further discussions, including the connection with the second law of thermodynamics and Fano resonance, are also briefly made in the end.




Jianming Wen , Xiaoshun Jiang, Mengzhen Zhang , Liang Jiang , Shiyue Hua , Hongya Wu, Chao Yang  and Min Xiao – Photonics 2015, 2, 498-508; doi:10.3390/photonics2020498.

Publication Date: May 13, 2015

Scroll to Top