Magnetoplasmonics Lab

Archives September 2023

News on Plasmonic

In these days, the journal of small science published a new paper entitled as “Switching on Versatility: Recent Advances in Switchable Plasmonic Nanostructures”

Plasmonic nanostructures are emerging as a promising avenue for nanophotonics due to their extreme light and thermal confinement, ultrafast manipulation processes, and potential uses in device miniaturization. However, their fixed functions have limited their versatility in applications. This review provides an overview of recent switchable plasmonic nanostructure engineering techniques, focusing on methods that provide reversible switchability. Passive optical switching, active structure-tunable switching, active material-based switching, and advanced applications, such as multifunctional biomedical sensing, energy harvesting, and dynamic optical devices, are discussed. The specific methods and techniques used to engineer switchable plasmonic nanostructures are also highlighted. By understanding the latest developments and overall trends, this review is expected to help researchers design and fabricate advanced plasmonic nanostructures with unprecedented switch ability and versatility for various applications.

News On Atomic Clock

In these days, the Journal of Applied Physics published a new paper entitled as “An additive-manufactured microwave cavity for a compact cold-atom clock”

ABSTRACT- We present an additive-manufactured microwave cavity for a Ramsey-type, double resonance, compact cold-atom clock. Atoms can be laser cooled inside the cavity using a grating magneto-optic trap with the cavity providing an excellent TE011-like mode while maintaining sufficient optical access for atomic detection. The cavity features a low Q-factor of 360 which conveniently reduces the cavity pulling of the future clock. Despite the potential porosity of the additive-manufacturing process, we demonstrate that the cavity is well-suited for vacuum.
A preliminary clock setup using cold atoms allows for measuring the Zeeman spectrum and Rabi oscillations in the cavity which enables us to infer excellent field uniformity and homogeneity, respectively, across the volume accessed by the cold atoms. Ramsey spectroscopy is demonstrated, indicating that the cavity is suitable for clock applications. Finally, we discuss the limitations of the future clock.