Magnetoplasmonics Lab

Archives February 10, 2024

Our new paper in Journal of optik

Magneto-Plasmonic-Induced Random Laser in Two-dimensional FeB Square Array

Majid F. Haddawi, J. M. Jassim, S. M. Hamidi

This work aims to enhance the lasing parameters of a random laser using magneto-plasmonic FeB@Au as scattering points. Two-dimensional FeB square arrays are covered by thin films of Rhodamine 6G from the bottom and top, respectively. For this purpose, two-dimensional structures were fabricated using the soft lithography method onto the polydimethylsiloxane (PDMS) substrate and deposited with a 35 nm thick gold layer using a sputtering machine, followed by a FeB (iron boride) thin layer using the radio frequency (RF) sputtering machine method. Finally, the samples were coated by rhodamine 6G dye. The samples were pumped via the second harmonic generation of the Nd:YAG laser under an external magnetic field set to 50 mT, and the random lasing action was measured using a spectrometer. Our results indicated a better ability to achieve random lasing under the external magnetic field. The output emission spectra increased with a decreased laser threshold from 0.66 mJ to 0.35 mJ, and the full width at half maximum (FWHM) decreased from 7.8 nm to 4 nm.

Relative Emission spectrum of samples at different pumping energies from 0.17 to 1.07 mJ and (b) Schematic diagram of the main two-dimensional substances before dye coating.