A novel approach in cancer diagnosis: integrating holography microscopic medical imaging and deep learning techniques—challenges and future trends
Asifa Nazir, Ahsan Hussain, Mandeep Singh, Assif Assad
Biomedical Physics & Engineering Express 11 (2), 022002, 2025
Medical imaging is pivotal in early disease diagnosis, providing essential insights that enable timely and accurate detection of health anomalies. Traditional imaging techniques, such as Magnetic Resonance Imaging (MRI), Computer Tomography (CT), ultrasound, and Positron Emission Tomography (PET), offer vital insights into three-dimensional structures but frequently fall short of delivering a comprehensive and detailed anatomical analysis, capturing only amplitude details. Three-dimensional holography microscopic medical imaging provides a promising solution by capturing the amplitude (brightness) and phase (structural information) details of biological structures. In this study, we investigate the novel collaborative potential of Deep Learning (DL) and holography microscopic phase imaging for cancer diagnosis. The study comprehensively examines existing literature, analyzes advancements, identifies research gaps, and proposes future research directions in cancer diagnosis through the integrated Quantitative Phase Imaging (QPI) and DL methodology. This novel approach addresses a critical limitation of traditional imaging by capturing detailed structural information, paving the way for more accurate diagnostics. The proposed approach comprises tissue sample collection, holographic image scanning, preprocessing in case of imbalanced datasets, and training on annotated datasets using DL architectures like U-Net and Vision Transformer (ViT’s). Furthermore, sophisticated concepts in DL, like the incorporation of Explainable AI (XAI) techniques, are suggested for comprehensive disease diagnosis and identification. The study thoroughly investigates the advantages of integrating holography imaging and DL for precise cancer diagnosis. Additionally, meticulous insights are presented by identifying the challenges associated with this integration methodology.