News On Metasurface

Feb 14, 2022 not categories

In this days, the journal of Optics Communications publishes a new paper entitled as “Tunable color gamut based a symmetric microcavity governed by Sb2S3”

Dynamically structural color has great attraction and practicability in display. By introducing a phase change material Sb2S3 (SS23), which exhibits significantly different optical properties in different crystalline states, we have theoretically studied the active gamut regulation using symmetric optical microcavities. When SS23 is embedded in the oxide layer of the traditional symmetric optical microcavity, the high order resonance is suppressed, resulting in a wide color gamut. Moreover, switching SS23 from the amorphous state to the crystalline state also produces resonant damping, resulting in a high purity transmission color, further increasing the gamut to 128% of sRGB. The influence of incident angle and machining error on the color gamut when SS23 is crystal state is also investigated in CIE 1931 chromaticity diagram. Our work provides a way to achieve dynamic gamut modulation using optical microcavity.